大型语言模型(LLM)相较于传统的语言模型具有更强大的能力,然而在某些情况下,它们仍可能无法提供准确的答案。为了解决大型语言模型在生成文本时面临的一系列挑战,提高模型的性能和输出质量,研究人员提出了一种新的模型架构:检索增强生成(RAG, Retrieval-Augmented Generation)。该架构巧妙地整合了从庞大知识库中检索到的相关信息,并以此为基础,指导大型语言模型生成更为精准的答案,从而显著提升了回答的准确性与深度。
在提升大语言模型效果中,RAG 和 微调(Finetune)是两种主流的方法。
微调: 通过在特定数据集上进一步训练大语言模型,来提升模型在特定任务上的表现。
RAG 已经在多个领域取得了成功,包括问答系统、对话系统、文档摘要、文档生成等。
本文作者:Eric
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!